Capturing the Essence of Cultural Landscapes

Most Effective Graphic Representations | Proposal & Preliminary Findings

Braden T. Meadows, BLA ‘20
Professor Cari Goetcheus

What are Cultural Landscapes?
“Cultural Landscapes are historically significant places that show evidence of human interaction with the physical environment,” as defined by the National Park Service. Cultural landscapes range in scale from the National Mall, the front-lawn of America - framed by eleven museums where numerous Presidents have been inaugurated to a 3-acre rural homestead in South Georgia.

Research Objectives:
- To identify and understand the most effective methods of cultural landscape documentation from an interdisciplinary perspective
- To identify the most effective graphic representations that provide accurate details while fostering appreciation among non-professionals
- Analysis of the breadth of graphic representations including: traditional hand graphics, both conventional and cutting-edge computerized measured drawings, and emerging technology such as LiDAR and Virtual Reality applications
- Complete consideration of the fundamental components of Cultural Landscapes: Circulation, Buildings & Structures, Vegetation, Site Plans & Features.

Circulation
Circulation includes the spaces, features, and applied material finishes that constitute the systems of movement in a landscape, as defined by the National Park Service. Being the first area of investigation for this research, the inquiries have focused on pedestrian and vehicular circulation. With these two forms of circulation identified, analysis was conducted on the evolution of types, methods of construction, methods of incorporating roads and paths into the landscape, expressions of cultural traits, etc.

Figure #1: Depicting Whitefield in Gettysburg National Military Park (1863-1868), this site plan generated by AutoCAD provides valuable site information regarding the building footprint and any site selection of base courses. The colors and hatching found on the map correspond to the type of material and pattern in which it is laid. Resources such as these provide key insights for rehabilitation and reconstruction.

Figure #2: Depicting Jefferson’s Academical Village (Charlottesville, Virginia), this site plan generated by AutoCAD provides valuable site information regarding the building footprint and any site selection of base courses. The colors and hatching found on the map correspond to the type of material and pattern in which it is laid. Resources such as these provide key insights for rehabilitation and reconstruction.

Figure #3: Magnificently detailed, this axonometric drawing illustrates the vehicular circulation patterns through the landscaped grounds of the Rockefeller National Historic Park in Woodstock, Vermont.

Figure #4: Showcasing LiDAR scans of the Chaco Roads in New Mexico, the graphic demonstrates how technology can be utilized to see how past civilizations circumvented through the land and the effects it had on the landscape. The left image is the original LiDAR scan, while the right image is overlaid with data collected from survey strips found within the boundaries. The LiDAR data collected confirms the existence of a trail with two forms of verification. Data such as this allows for the exploration and documentation of cultural landscapes that might not necessarily be visible to the human eye.

Figure #5: Depicting Lobster Cove in Massachusetts, this graphic eloquently captures the array of site features that effect how people interact with the land. Ship-building was a cornerstone of the economy and its effects are illustrated with how the site is laid out to promote ease of access to the shipyard.

Figure #6: Displaying the site of the village, the plan highlights many of the site features, which can be clearly observed and analyzed. LiDAR is utilized to explore the site and add new depth and context to our understanding of the site's past.

Figure #7: Depicting the trail construction - Beets Old Fort National Historic Site (La Londe, Canada). The hill is a key location in this graphic, as it is the starting point for the trail construction and illustrates the importance of topography in these landscapes.

Figure #8: Showing extensive detail of a trail in Massachusetts, this graphic captures the topography of the land and the effects it had on the surrounding landscape. The trail winds through the forest, showing how human activity has interacted with the natural environment.

Figure #9: Depicting the site of the shipyard, this graphic illustrates the importance of water in these landscapes. The waterway is a crucial feature, providing transportation and access to the land.

Figure #10: Depicting the site of the village, the plan highlights many of the site features, which can be clearly observed and analyzed. LiDAR is utilized to explore the site and add new depth and context to our understanding of the site's past.

Figure #11: Depicting a shipyard in Ohio, this graphic highlights the importance of shipbuilding in these landscapes. The shipyard is a key feature, providing transportation and access to the land.

Citations:
Braden T. Meadows, BLA ‘20
Professor Cari Goetcheus